Antibody remodeling: a general solution to the design of a metal-coordination site in an antibody binding pocket.
نویسندگان
چکیده
To develop a general approach to designing cofactor-binding sites for catalytic antibodies, we characterized structural patterns in the binding sites of antibodies and zinc enzymes. Superposition of eight sets of antibody light- and heavy-chain variable domains identified structurally conserved sites within the sequence-variable complementarity determining regions. The pattern for catalytic zinc sites included two ligands close in sequence, a sequence-distant ligand, and a main-chain hydrogen bond joining two ligands. In both the light- and heavy-chain variable domains, the stereochemistry of five structurally conserved sites general to all known antibody structures matched that of the zinc ligands of carbonic anhydrase: three residues on two hydrogen-bonded antiparallel beta-strands. For one such general site, an antibody model replacing residue 34 on the first complementarity determining region of the light chain (L1) and residues 89 and 91 on the third complementarity determining region of the light chain (L3) with histidine ligands formed a zinc-binding site with an open coordination position at the bottom of the antibody binding pocket. For the anti-fluorescein antibody 4-4-20, this L1-L3 site placed the zinc ion about 4 A from the bound fluorescein, an indicator for metal binding. This predicted zinc-binding mutant was created in the single-chain variable domain construct, expressed, and found by fluorescence quenching to bind metal ion with an affinity constant of 10(6) M-1. Thus, our template-based multisite design proved successful for remodeling an antibody to contain a cofactor-binding site, without requiring further mutagenesis and screening. Combination of a specific light or heavy chain containing a catalytic metal site with a library of complementary chains raised to potential substrates or transition state analogs should greatly improve the production of catalytic antibodies with desired activities and specificities.
منابع مشابه
اثر آنتی بادی های منوکلونال ضد پلاسمینوژن انسانی بر فعال شدن گلو-پلاسمینوژن انسانی بوسیله فعال کننده های پلاسمینوژن
Background: Human plasminogen is a plasma glycoprotein synthesized mainly in the liver. Conversion of plasminogen to plasmin by plasminogen activators is a key event in the fibrinolytic system. In this study, we investigated the effects of two anti-human plasminogen monoclonal antibodies, A1D12 and MC2B8 on Glu-plasminogen activation in presence of u-PA, t-PA and streptokinase. Methods: Produci...
متن کاملMeasurement of Affinity Constant of Anti-human IgG Monoclonal Antibodies by an ELISA-based Method
Background: The affinity of an antibody to its antigen is a crucial parameter in its biological activity and performance of an immunoassay such as ELISA. Affinity of most IgG specific MAbs are often determined by methods which require labeling of either antigen or antibody, and are sometimes difficult to control, do not always lead to the expected signal and often result in immunological modifi...
متن کاملتولید آنتی بادی تک زنجیرهای انسانی شده ضد مارکر CD20 در E.coli
Background and Objectives: Rituximab is an anti-CD20 chimeric monoclonal antibody widely used for the treatment of malignant B cells lymphoma. However, the immunogenicity of murine-derived monoclonal antibodies and the large size of full length antibodies restrict cancer immunotherapy. Humanized single chain antibodies can be a solution and a promising alternative for application in immunothera...
متن کاملOfatumumab Monoclonal Antibody Affinity Maturation Through in silico Modeling
Background: Ofatumumab, an anti-CD20 mAb, was approved in 2009 for the treatment of chronic lymphocytic leukemia. This mAb acts through immune-mediated mechanisms, in particular complement-dependent cytotoxicity and antibody-dependent cellular cytotoxicity by natural killer cells as well as antibody-dependent phagocytosis by macrophages. Apoptosis induction is another mechanism of this antibody...
متن کاملConstruction and Expression of Hepatitis B Surface Antigen Escape Variants within the "a" Determinant by Site Directed Mutagenesis
Background: The antibody response to hepatitis B surface antigen (HBsAg) controls hepatitis B virus infection. The "a" determinant of HBsAg is the most important target for protective antibody response, diagnosis and immunoprophylaxis. Mutations in this area may induce immune escape mutants and affect the performance of HBsAg assays. Objectives: To construct clinically relevant recombinant muta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 87 17 شماره
صفحات -
تاریخ انتشار 1990